自我介绍范文网

当前位置:自我介绍范文网 > 学习方法 > >

Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:

来源::网络整理 | 作者:管理员 | 本文已影响

" 可塑性损失 "(Loss of Plasticity)是深度神经网络最常被诟病的一个缺点,这也是基于深度学习的 AI 系统被认为无法持续学习的原因之一。

对于人脑而言," 可塑性 " 是指产生新神经元和神经元之间新连接的能力,是人进行持续学习的重要基础。随着年龄的增长,作为巩固已学到知识的代价,大脑的可塑性会逐渐下降。神经网络也是类似。

一个形象的例子是,2020 年热启动式(warm-starting)训练被证明:只有抛除最初学到的内容,以一次性学习的方式在整个数据集上训练,才会取得比较好的学习效果。

在深度强化学习(DRL)中,AI 系统往往也要 " 遗忘 " 神经网络之前所学习的所有内容,只将部分内容保存到回放缓冲区,再从零开始实现不断学习。这种重置网络的方式也被认为证明了深度学习无法持续学习。

那么,如何才能使学习系统保持可塑性?

近日,强化学习之父 Richard Sutton 在 CoLLAs 2022 会议中作了一个题为 "Maintaining Plasticity in Deep Continual Learning" 的演讲,提出了他认为能够解决这个问题的答案:持续反向传播算法(Continual Backprop)。

Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:

Richard Sutton 首先从数据集的角度证明了可塑性损失的存在,然后从神经网络内部分析了可塑性损失的原因,最后提出持续反向传播算法作为解决可塑性损失的途径:重新初始化一小部分效用度较低的神经元,这种多样性的持续注入可以无限期地保持深度网络的可塑性。

以下是演讲全文,AI 科技评论做了不改原意的整理。

1

可塑性损失的真实存在

深度学习是否能真正解决持续学习的问题?

答案是否定的,主要原因有以下三点:

" 无法解决 " 是指如同非深度的线性网络,学习速度最终会非常缓慢;

深度学习中采用的专业标准化方法只在一次性学习中有效,与持续学习相违背;

回放缓存本身就是承认深度学习不可行的极端方法。

因此,我们必须寻找适用于这种新型学习模式的更优算法,摆脱一次性学习的局限性。

首先,我们利用 ImageNet 和 MNIST 数据集做分类任务,实现回归预测,对持续学习效果进行直接测试,证明了监督学习中可塑性损失的存在。

ImageNet数据集测试

ImageNet 是一个包含数百万张用名词标记的图像的数据集。它有 1000 个类别,每个类别有 700 张或更多图像,被广泛用于类别学习和类别预测。

下面是一张鲨鱼照片,通过下采样降到 32*32 大小。这个实验的目的是从深度学习实践中寻找最小的变化。我们将每个类别的 700 张图像划分成 600 个训练样例和 100 个测试样例,然后将 1000 个类别分成两组,生成长度为 500 的二元分类任务序列,所有的数据集会被随机地打乱顺序。每个任务训练结束后,我们在测试样例上评估模型的准确率,独立运行 30 次后取平均,再进入下一个二元分类任务。

Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:

500 个分类任务会共享相同的网络,为了消除复杂性影响,任务切换后会重置头网络。我们采用标准网络,即 3 层卷积 + 3 层全连接,不过对于 ImageNet 数据集来说输出层可能相对小一些,这是由于一个任务只用了两种类别。对于每个任务,每 100 个示例作为一个 batch,共有 12 个 batch,训练 250 个 epoch。在开始第一个任务前只进行一次初始化,利用 Kaiming 分布初始化权重。针对交叉熵损失采用基于动量的随机梯度下降法,同时采用 ReLU 激活函数。

这里引出两个问题:

1、在任务序列中,性能会如何演化?

2、在哪一个任务上的性能会更好?是初始的第一个任务会更好?还是后续任务会从前面任务的经验中获益?

下图给出了答案,持续学习的性能是由训练步长和反向传播综合决定的。

由于是二分类问题,偶然性概率是 50%,阴影区域表示标准差,这种差异并不显著。线性基准采用线性层直接处理像素值,没有深度学习方法效果好,这种差异很显著。

Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:

图注:使用更小的学习率(α =0.001)准确率会更高,在前 5 个任务中性能逐步提升,但从长远来看却呈下降趋势。

我们接着将任务数目增加到了 2000,进一步分析了学习率对于持续学习效果的影响,平均每 50 个任务计算一次准确率。结果如下图。

Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:

图注:α =0.01 的红色曲线在第一个任务上的准确率大约是 89%,一旦任务数超过 50,准确率便下降,随着任务数进一步增加,可塑性逐渐缺失,最终准确率低于线性基准。α =0.001 时,学习速度减慢,可塑性也会急剧降低,准确率只是比线性网络高一点点。

因此,对于良好的超参数,任务间的可塑性会衰减,准确率会比只使用一层神经网络还要低,红色曲线所显示的几乎就是 " 灾难性的可塑性缺失 "。

训练结果同样取决于迭代次数、步长数和网络尺寸等参数,图中每条曲线在多个处理器上的训练时间是 24 小时,在做系统性实验时可能并不实用,我们接下来选择 MNIST 数据集进行测试。

MNIST数据集测试

MNIST 数据集共包含 60000 张手写数字图像,有 0-9 这 10 个类别,为 28*28 的灰度图像。

Goodfellow 等人曾通过打乱顺序或者随机排列像素创建一种新的测试任务,如右下角的图像就是生成的排列图像的示例,我们采用这种方法来生成整个任务序列,在每个任务中 6000 张图像以随机的形式呈现。这里没有增加任务内容,网络权重只在进行第一个任务之前初始化一次。我们可以用在线的交叉熵损失进行训练,同样继续使用准确率指标衡量持续学习的效果。

Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:


本文标题:Richard Sutton 直言卷积反向传播已经落后,AI 突破要有新思路:
分享到: 更多

更多关于“学习方法”的文章

随机阅读TODAY'S FOCUS